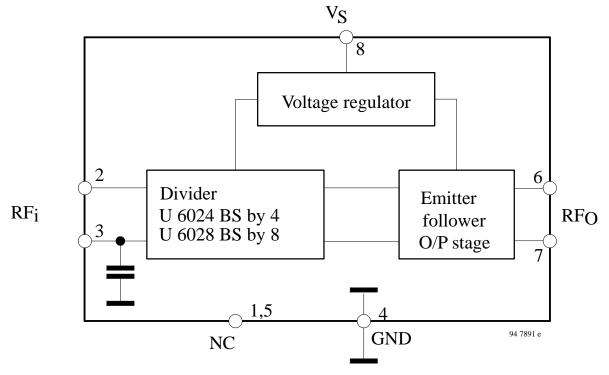
6-GHz Frequency Divider

Description

U 6024/28 BS are high speed frequency dividers using TELEFUNKEN's advanced bipolar technology. The input frequency ranges from 3 to 6 GHz. Output buffer and

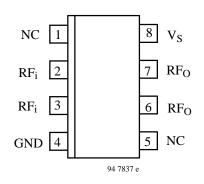
voltage regulator are integrated. The devices are suitable for satellite communications, instrumentation and telecomunications.


Features

- U 6024 BS divides by 4
- U 6028 BS divides by 8
- Very low current consumption (45 mA typical)
- 6-GHz maximum operating frequency
- 5-V (typical) supply voltage
- ESD protected according to MIL-STD.883 method 3015 class 2
- SO-8 package

Benefits

- Extended operation time due to low current consumption
- Only three external components
- Low RF input level reduces radiation problems



TEMIC

TELEFUNKEN Semiconductors

Pin Description

Pin	Symbol	Function
1	NC	Not connected
2	RFi	RF input
3	RFi	RF input with internal decoupling capacitor
4	GND	Ground
5	NC	Not connected
6	RFo	RF Output
7	RFo	RF Output
8	VS	Supply voltage

Absolute Maximum Ratings

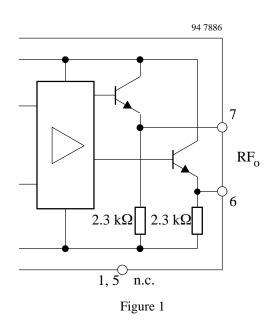
Parameters	Symbol	Value	Unit
Supply voltage Pin 8	Vs	6	V
Input voltage range Pins 2 and 3	Vi	0 to Vs	V
Junction temperature	Тj	125	°C
Storage temperature range	T _{stg}	-40 to +125	°C

Operating Range

Parameters	Symbol	Value	Unit
Supply voltage range	Vs	4.5 to 5.5	V
Ambient temperature range	T _{amb}	-25 to +80	°C

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient, SO-8	R _{thja}	175	K/W


Electrical Characteristics

Test conditions (unless otherwise specified): $V_S = 4.5$ to 5.5 V, $T_{amb} = 0$ to 70°C., referred to test circuit

Parameters	Test Conditions / Pin	Symbol	Min	Тур	Max	Unit
Supply current	$V_S = 5 V$ Pin 8	IS		45		mA
RF input	Pin 2	RFi				
Input sensitivity	$R_S = 50 \Omega$	V _{RFi}		Figure 2		
Large signal compatibility	$R_S = 50 \ \Omega$	V _{maxRFi}		Figure 2		
Input frequency range		fi _{min} fi _{max}	6000		3000	MHz
RF output	Pins 6 and 7	RFO				
Output level		V _{RFo}		200		mV _{PP}
DC output level	$V_{S} = 5 V$					
High	$R_L \ge 10 k\Omega$	RF DCH		3.6		V
Low		RF _{DCL}		3.1		V

Note: 1 RMS-voltage calculated from the measured available power R_S = system resistance, R_L = load resistance

Output stage

Input sensitivity vs. frequency

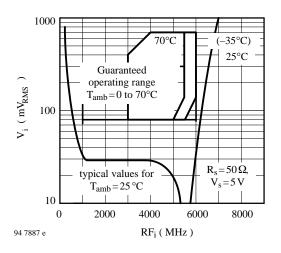


Figure 2

Input impedance S11

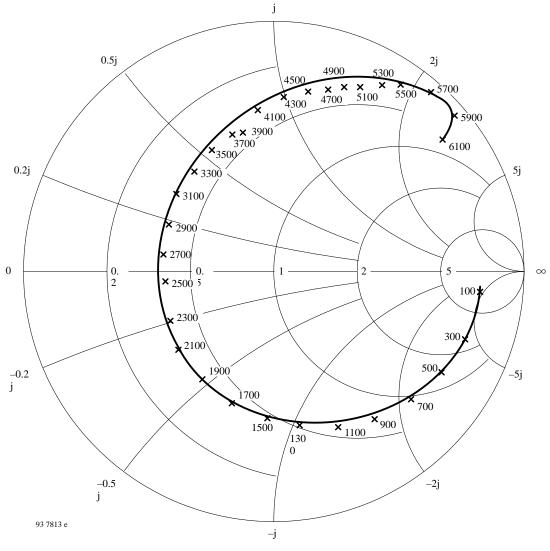


Figure 3

Application

Master-Slave-D-Flip-Flops (MS-D-FF's) can be used for frequency division by feeding back the inverted output to the data input. Typical for this kind of dividers is a free running oscillation of the first divider stage. Here the input sensitivity of the circuit has a minimum (see input sensitivity vs. frequency). An oscillation frequency of e.g. 5.6 GHz (related to the input) will result in an output frequency of 5.6 GHz: 8 = 700 MHz. TEMIC's self oscillating frequency dividers are indicated with suffix "S" (U 6028 BS-AFP). This oscillation often is used for quality control of IC's: the higher the frequency, the better the performance.

On the other hand, if this oscillation causes problems e.g. in frequency counters an external offset can be added. This can simply be done by connecting an ohmic resistor from pin 3 (RF INPUT) to ground. A value of $R_3 = 47 \text{ k}\Omega$ will stop self oscillation without degrading the input sensitivity markly. Smaller values will decrease the sensitivity especially at higher frequencies.

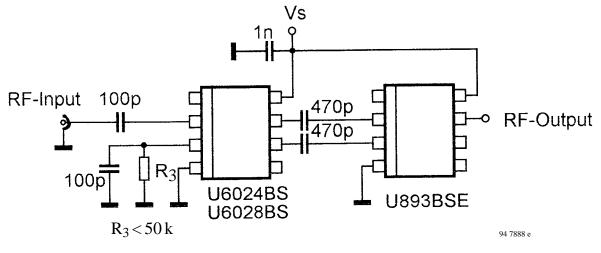
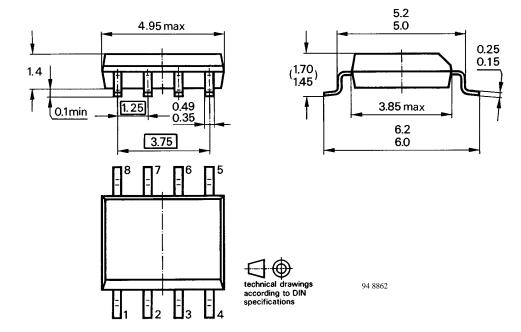



Figure 4 Application Circuitry

Dimensions in mm

Package: SO 8

OZONE DEPLETING SUBSTANCES POLICY STATEMENT

It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to

- 1. Meet all present and future national and international statutory requirements and
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

Of particular concern is the control or elimination of releases into the atmosphere of those substances which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) will soon severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of any ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA and
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC can certify that our semiconductors are not manufactured with and do not contain ozone depleting substances.

We reserve the right to make changes without further notice to improve technical design.

Parameters can vary in different applications. All operating parameters must be validated by the customer for each customer application. Should the buyer use TEMIC products for any unintended or unauthorized application the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses arising out of, directly or indirectly, personal damage, injury or death associated with such unintended or unauthorized use.

TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax Number: 49 (0)7131 67 2423